\(\int \frac {1}{\sqrt {2+5 x^2-4 x^4}} \, dx\) [128]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (warning: unable to verify)
   Maple [B] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 16, antiderivative size = 49 \[ \int \frac {1}{\sqrt {2+5 x^2-4 x^4}} \, dx=\sqrt {\frac {2}{-5+\sqrt {57}}} \operatorname {EllipticF}\left (\arcsin \left (2 \sqrt {\frac {2}{5+\sqrt {57}}} x\right ),\frac {1}{16} \left (-41-5 \sqrt {57}\right )\right ) \]

[Out]

EllipticF(2*x*2^(1/2)/(5+57^(1/2))^(1/2),5/8*I*2^(1/2)+1/8*I*114^(1/2))*2^(1/2)/(-5+57^(1/2))^(1/2)

Rubi [A] (verified)

Time = 0.07 (sec) , antiderivative size = 49, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.125, Rules used = {1109, 430} \[ \int \frac {1}{\sqrt {2+5 x^2-4 x^4}} \, dx=\sqrt {\frac {2}{\sqrt {57}-5}} \operatorname {EllipticF}\left (\arcsin \left (2 \sqrt {\frac {2}{5+\sqrt {57}}} x\right ),\frac {1}{16} \left (-41-5 \sqrt {57}\right )\right ) \]

[In]

Int[1/Sqrt[2 + 5*x^2 - 4*x^4],x]

[Out]

Sqrt[2/(-5 + Sqrt[57])]*EllipticF[ArcSin[2*Sqrt[2/(5 + Sqrt[57])]*x], (-41 - 5*Sqrt[57])/16]

Rule 430

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(1/(Sqrt[a]*Sqrt[c]*Rt[-d/c, 2]
))*EllipticF[ArcSin[Rt[-d/c, 2]*x], b*(c/(a*d))], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && Gt
Q[a, 0] &&  !(NegQ[b/a] && SimplerSqrtQ[-b/a, -d/c])

Rule 1109

Int[1/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Dist[2*Sqrt[-c], I
nt[1/(Sqrt[b + q + 2*c*x^2]*Sqrt[-b + q - 2*c*x^2]), x], x]] /; FreeQ[{a, b, c}, x] && GtQ[b^2 - 4*a*c, 0] &&
LtQ[c, 0]

Rubi steps \begin{align*} \text {integral}& = 4 \int \frac {1}{\sqrt {5+\sqrt {57}-8 x^2} \sqrt {-5+\sqrt {57}+8 x^2}} \, dx \\ & = \sqrt {\frac {2}{-5+\sqrt {57}}} F\left (\sin ^{-1}\left (2 \sqrt {\frac {2}{5+\sqrt {57}}} x\right )|\frac {1}{16} \left (-41-5 \sqrt {57}\right )\right ) \\ \end{align*}

Mathematica [C] (warning: unable to verify)

Result contains complex when optimal does not.

Time = 10.05 (sec) , antiderivative size = 56, normalized size of antiderivative = 1.14 \[ \int \frac {1}{\sqrt {2+5 x^2-4 x^4}} \, dx=-i \sqrt {\frac {2}{5+\sqrt {57}}} \operatorname {EllipticF}\left (i \text {arcsinh}\left (2 \sqrt {\frac {2}{-5+\sqrt {57}}} x\right ),\frac {1}{16} \left (-41+5 \sqrt {57}\right )\right ) \]

[In]

Integrate[1/Sqrt[2 + 5*x^2 - 4*x^4],x]

[Out]

(-I)*Sqrt[2/(5 + Sqrt[57])]*EllipticF[I*ArcSinh[2*Sqrt[2/(-5 + Sqrt[57])]*x], (-41 + 5*Sqrt[57])/16]

Maple [B] (verified)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 79 vs. \(2 (38 ) = 76\).

Time = 0.66 (sec) , antiderivative size = 80, normalized size of antiderivative = 1.63

method result size
default \(\frac {2 \sqrt {1-\left (-\frac {5}{4}+\frac {\sqrt {57}}{4}\right ) x^{2}}\, \sqrt {1-\left (-\frac {5}{4}-\frac {\sqrt {57}}{4}\right ) x^{2}}\, F\left (\frac {x \sqrt {-5+\sqrt {57}}}{2}, \frac {5 i \sqrt {2}}{8}+\frac {i \sqrt {114}}{8}\right )}{\sqrt {-5+\sqrt {57}}\, \sqrt {-4 x^{4}+5 x^{2}+2}}\) \(80\)
elliptic \(\frac {2 \sqrt {1-\left (-\frac {5}{4}+\frac {\sqrt {57}}{4}\right ) x^{2}}\, \sqrt {1-\left (-\frac {5}{4}-\frac {\sqrt {57}}{4}\right ) x^{2}}\, F\left (\frac {x \sqrt {-5+\sqrt {57}}}{2}, \frac {5 i \sqrt {2}}{8}+\frac {i \sqrt {114}}{8}\right )}{\sqrt {-5+\sqrt {57}}\, \sqrt {-4 x^{4}+5 x^{2}+2}}\) \(80\)

[In]

int(1/(-4*x^4+5*x^2+2)^(1/2),x,method=_RETURNVERBOSE)

[Out]

2/(-5+57^(1/2))^(1/2)*(1-(-5/4+1/4*57^(1/2))*x^2)^(1/2)*(1-(-5/4-1/4*57^(1/2))*x^2)^(1/2)/(-4*x^4+5*x^2+2)^(1/
2)*EllipticF(1/2*x*(-5+57^(1/2))^(1/2),5/8*I*2^(1/2)+1/8*I*114^(1/2))

Fricas [A] (verification not implemented)

none

Time = 0.09 (sec) , antiderivative size = 41, normalized size of antiderivative = 0.84 \[ \int \frac {1}{\sqrt {2+5 x^2-4 x^4}} \, dx=\frac {1}{32} \, {\left (\sqrt {57} \sqrt {2} + 5 \, \sqrt {2}\right )} \sqrt {\sqrt {57} - 5} F(\arcsin \left (\frac {1}{2} \, x \sqrt {\sqrt {57} - 5}\right )\,|\,-\frac {5}{16} \, \sqrt {57} - \frac {41}{16}) \]

[In]

integrate(1/(-4*x^4+5*x^2+2)^(1/2),x, algorithm="fricas")

[Out]

1/32*(sqrt(57)*sqrt(2) + 5*sqrt(2))*sqrt(sqrt(57) - 5)*elliptic_f(arcsin(1/2*x*sqrt(sqrt(57) - 5)), -5/16*sqrt
(57) - 41/16)

Sympy [F]

\[ \int \frac {1}{\sqrt {2+5 x^2-4 x^4}} \, dx=\int \frac {1}{\sqrt {- 4 x^{4} + 5 x^{2} + 2}}\, dx \]

[In]

integrate(1/(-4*x**4+5*x**2+2)**(1/2),x)

[Out]

Integral(1/sqrt(-4*x**4 + 5*x**2 + 2), x)

Maxima [F]

\[ \int \frac {1}{\sqrt {2+5 x^2-4 x^4}} \, dx=\int { \frac {1}{\sqrt {-4 \, x^{4} + 5 \, x^{2} + 2}} \,d x } \]

[In]

integrate(1/(-4*x^4+5*x^2+2)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/sqrt(-4*x^4 + 5*x^2 + 2), x)

Giac [F]

\[ \int \frac {1}{\sqrt {2+5 x^2-4 x^4}} \, dx=\int { \frac {1}{\sqrt {-4 \, x^{4} + 5 \, x^{2} + 2}} \,d x } \]

[In]

integrate(1/(-4*x^4+5*x^2+2)^(1/2),x, algorithm="giac")

[Out]

integrate(1/sqrt(-4*x^4 + 5*x^2 + 2), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\sqrt {2+5 x^2-4 x^4}} \, dx=\int \frac {1}{\sqrt {-4\,x^4+5\,x^2+2}} \,d x \]

[In]

int(1/(5*x^2 - 4*x^4 + 2)^(1/2),x)

[Out]

int(1/(5*x^2 - 4*x^4 + 2)^(1/2), x)